ZADANIA OTWARTE

 Zadanie 1   (1pkt)
W kartezjańskim układzie współrzędnych $(𝑥, 𝑦)$ przedstawiono fragment wykresu funkcji kwadratowej $𝑓(𝑥) = 𝑎𝑥^2 + 𝑏𝑥 + 𝑐$. Wierzchołek paraboli, która jest wykresem funkcji $𝑓$, ma współrzędne $(5, −3)$. Jeden z punktów przecięcia paraboli z osią $0x$ układu współrzędnych ma współrzędne $(4,0)$.
Zapisz poniżej zbiór wszystkich wartości funkcji $f$
Odpowiedź $[-3,\infty)$

Matura próbna grudzień 2022

 Zadanie 2   (2pkt)
W kartezjańskim układzie współrzędnych $(𝑥, 𝑦)$ przedstawiono fragment wykresu funkcji kwadratowej $𝑓(𝑥) = 𝑎𝑥^2 + 𝑏𝑥 + 𝑐$. Wierzchołek paraboli, która jest wykresem funkcji $𝑓$, ma współrzędne $(5, −3)$. Jeden z punktów przecięcia paraboli z osią $0x$ układu współrzędnych ma współrzędne $(4,0)$.
Wyznacz wzór funkcji kwadratowej $f$ w postaci kanonicznej.
Zapisz obliczenia.
Odpowiedź $$

Matura próbna grudzień 2022